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Abstract

Several important classes of images such as text, barcode
and pattern images have the property that pixels can only
take a distinct subset of values. This knowledge can benefit
the restoration of such images, but it has not been widely
considered in current restoration methods. In this work, we
describe an effective and efficient approach to incorporate
the knowledge of distinct pixel values of the pristine images
into the general regularized least squares restoration frame-
work. We introduce a new regularizer that attains zero at the
designated pixel values and becomes a quadratic penalty
function in the intervals between them. When incorporated
into the regularized least squares restoration framework,
this regularizer leads to a simple and efficient step that re-
sembles and extends the rounding operation, which we term
as soft-rounding. We apply the soft-rounding enhanced so-
lution to the restoration of binary text/barcode images and
pattern images with multiple distinct pixel values. Exper-
imental results show that soft-rounding enhanced restora-
tion methods achieve significant improvement in both visual
quality and quantitative measures (PSNR and SSIM). Fur-
thermore, we show that this regularizer can also benefit the
restoration of general natural images.

1. Introduction
The task of image restoration is to recover an image from

its noisy and/or blurry observation [3]. Image restoration is
an example of ill-posed inverse problems, and unique solu-
tions can only be obtained by introducing proper regulariza-
tions and constraints on the clean images. Indeed, it is now
generally accepted that the more prior knowledge we have
about the properties of the uncorrupted images, the better
we can solve the image restoration problem [1, 9].

To date, the most widely used statistical regularities for
images are obtained from their band-pass filter responses
(such as gradients or wavelets) or mean-removed pixel
patches. Such responses have been observed to have heavy-

tailed marginal histograms, on the basis of which regular-
izers or priors that prefer sparse responses have been used to
attain the state-of-the-art restoration performances. Exam-
ples include regularizers in the form of the `0 norm [25, 26]
and total variation [20], or prior models based on general-
ized Laplacian [11, 13] and Gaussian mixtures [23, 28]. In
these image restoration methods, pixel values are usually
treated as continuous variables.

However, images are captured and stored in a digital for-
mat, which poses a general constraint on pixel values. The
pixels of an image in a b-bit format can only take integer
values from the set {0, · · · , 2b − 1}. For some important
subclasses of images such as text or pattern images, their
pixels can take only a distinct set of the full range integer
values (see Fig.1(a) for an example). Furthermore, it is usu-
ally possible to obtain these values before we restore such
an image. For text and barcode images, the pixel values
are usually separated into two distinct classes of foreground
pixels and background pixels. For pattern images, image
pixels usually take multiple distinct pixel values, which can
be estimated from other images of the same type.

Knowing that the pristine image can only take some dis-
tinct pixel values provides a useful constraint for image
restoration, which can help to suppress visual artifacts and
improve the restoration performance. A straightforward ap-
proach would be to round the restored pixel values to the
nearest distinct pixel values as a post-processing step. How-
ever, such a simple solution often does more harm than
good, as the rounding step can undo the structures recovered
from the restoration step (see Fig.1(c)). On the other hand,
except in a few cases [10, 16, 18, 27], such prior information
about pixel values seems trivial and is largely overlooked by
most existing image restoration algorithms.

In this work, we describe an effective and efficient ap-
proach to incorporate the knowledge of distinct pixel values
of the pristine images into the popular regularized least
squares restoration framework. We introduce a new regu-
larizer of the uncorrupted images in the pixel domain. This
regularizer attains zero at the designated pixel values and is



(a) original image (b) corrupted image (c) `0 restoration [18]
PSNR = 19.45dB

SSIM = 0.79

(d) `0 + post rounding
PSNR = 19.28dB

SSIM = 0.82

(e) `0 + soft-rounding
PSNR = 19.84dB

SSIM = 0.85
Figure 1: An example demonstrating the effect of our method. (a) An original image with four distinct pixel values 0, 100, 150, 255. (b)
Its corruption with a 101× 101 blur kernel and 1% white Gaussian noise. (c) Restoration results using the state-of-the-art method based
on `0 regularization of image gradients [18]. The artifacts in the restored image are due to pixel values that are not consistent with the
four distinct pixel values. (d) Rounding (nearest neighbor) of the restoration results in (c) to the four distinct pixel values. Though some
artifacts in (c) are removed, some structures restored in (c) are also destroyed. (e) Restoration results using our method that combines
gradient domain `0 regularization based restoration with soft-rounding operation. Note that our method achieves significant improvement
in comparison with (c) and (d) both visually and quantitatively (PSNR and SSIM).

a quadratic function in the intervals between them. As such,
it reflects the preference of the pixel values of the restored
image to take the designated distinct pixel values. When
incorporated into the regularized least squares restoration
framework, this regularizer leads to a simple and efficient
solution that resembles the rounding operation, which we
term as soft-rounding. We apply the soft-rounding en-
hanced solution to various state-of-the-art image restoration
methods, and show that it achieves significant improvement
in both visual quality and quantitative measures (PSNR and
SSIM) for the restoration of binary images and multi-value
pattern images. We also demonstrate its effectiveness for
general natural image restoration.

2. Background and Related Work
We formulate the image restoration problem as recover-

ing a pristine image of m pixels, which is vectorized and
denoted with an m-dimensional vector x, from its noisy
and/or blurry observation y. We assume that y is generated
from the convolution of x with a spatially invariant blurring
kernel k and further contaminated with additive Gaussian
noise n, as:

y = k⊗ x + n, (1)
where ⊗ denotes the convolution operation [3]1. The
restoration problem can be solved within a regularized least
squares (RLS) estimation framework, as:

min
x

1

2
‖y −Kx‖22 + λNΓN (Dx) (2)

where K corresponds to the block Toeplitz matrix repre-
sentation of the convolution kernel k, D represents a lin-

1In the current work, we consider the setting that the blurring kernel and
noise variance are known, known as non-blind restoration. Our method can
also be extended to blind restoration [14].

ear transform through which image properties can be better
modeled, ΓN is a regularizer in the transformed domain,
and λN is an adjustable parameter balancing the contribu-
tions of the data fidelity term and the regularization term in
the objective function. For image denoising, K reduces to
an identity matrix.

The choice of the linear transform D and the regular-
izer ΓN is essential for effective restoration. A common
approach is to first transform image to band-pass domains
(e.g., gradients or wavelets) or use mean-removed patches,
then use regularizers in the form of sparsity-encouraging
norms, e.g., `0 [25, 26] and total variation [20], or models
capturing statistical properties of images in such domains,
e.g., generalized Laplacian [11, 13], Gaussian scale mix-
tures [23], or general Gaussian mixtures [28].

To date, properties of the pristine images in the pixel
domain have been largely overlooked in image restoration
but in a few cases [4, 10, 16, 18, 27]. The constraint on
pixels to take distinct values has been considered in a few
recent works in binary image restoration, where the pixels
can take only two values. Zhang introduced a regularization
term to penalize pixel values that drift away from the two
values [27]. The specific regularizer used there is a fourth-
order polynomial and requires iterative numerical approx-
imations on each pixel. Pan et al. used a `0 regulariza-
tion term if only the zero peak in pixel values is consid-
ered [18]. They showed that this `0 intensity prior helps to
identify salient edges in text images and therefore improves
blur kernel estimation, but its non-blind restoration perfor-
mance was not reported in the paper. A potential limitation
of the `0 intensity prior is that it might not be suitable for
binary images whose pixel values center around two peaks
far away from zero. Another common limitation of these bi-
nary image restoration methods is that they can not be easily



extended to handle more than two distinct pixel values.
Some recent methods further incorporate histograms of

the pixel values in image restoration. Chen et al. stud-
ied the intensity histograms of clear document images and
used them as reference information for blind deconvolu-
tion, leading to improved restored results with reduced vis-
ual artifacts [4]. Mei et al. recently proposed a framework
to enforce marginal histogram constraints in image restora-
tion. They showed that for pattern images, marginal inten-
sity histograms can significantly improve the denoising per-
formance under high noisy levels [16]. Although a pixel
histogram provides more information than specifying dis-
tinct pixel values in an image, estimating such histograms
from degraded images is a non-trivial task [5, 16, 29], which
poses a limitation for these methods in practice. In con-
trast, as we pointed out in Section 1, obtaining distinct pixel
values before restoring an image is usually possible for the
type of images we focus on in this work.

3. Method
As discussed previously, some subclasses of images have

distinct pixel values. When these values are known a priori,
they provide valuable information to improve the restora-
tion performance. In this section, we describe in detail an
approach to incorporate such information into the general
RLS restoration framework, Eq.(2). It turns out that the spe-
cific solution we obtained has a particularly intuitive inter-
pretation as a “soft-rounding” operation, which adaptively
adjusts the restored pixel values to the target values.

3.1. Distinct Pixel Value Regularizer

We first introduce a regularizer to encourage pixel values
of the restored image to take the designated distinct pixel
values. Formally, assuming we require the restored image
should have n distinct pixel values t1 < t2 · · · < tn, repre-
sented in a vector t = (t1, t2, · · · , tn), we define the regu-
larizer as

ΓI(x) =
∑m
i=1 γt(xi) (3)

wherem is the number of the image pixels, and γt measures
the intensity deviation on each pixel:

γt(x) =


1
2 (t1 − x) if x < t1
1
2 (x− tj)(tj+1 − x) if x ∈ [tj , tj+1]
1
2 (x− tn) if x > tn

. (4)

Fig.2 shows an example of γt(x) in the range of [0, 1].
This function has the following distinct characteristics:

1. γt(x) ≥ 0 for x ∈ R;
2. γt(x) attains zero at tj (j = 1, · · · , n) and reaches

local maximum when x locates at the midpoint of each
interval;

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

Figure 2: An example of γt(x) in the range of [0, 1], with five
distinct values (�) corresponding to [0.1, 0.5, 0.7, 0.8, 0.9].

3. for x ∈ [tj , tj+1], γt(x) is a concave quadratic func-
tion, and γt(x) reduces to a linear function outside the
range of [t1, tn].

Note that γt(x) is neither a convex nor a concave function
over the whole real line, but at individual intervals it is con-
cave (it becomes either a quadratic or linear function).

3.2. Using ΓI in Image Restoration

We incorporate regularizer ΓI(x) into the RLS restora-
tion framework and solve the following problem:

min
x

1

2
‖y −Kx‖22 + λNΓN (Dx) + λIΓI(x) (5)

where we introduce two parameters λN , λI to balance the
contributions of the three terms in the overall objective
function. Note that Eq.(5) is a non-convex problem, and
we optimize it for a local minimum.

Following the general variable splitting scheme [2], we
introduce an auxiliary variable zI and convert Eq.(5) to the
following equivalent problem:

min
x

1
2‖y −Kx‖22 + λNΓN (Dx) + λIΓI(zI)

s.t. zI = x
(6)

We then solve this equality constrained problem using the
augmented Lagrangian method (ALM) [17]. Introducing
a Lagrange multiplier wI to the equality constraint and a
penalty parameter µI , we form the augmented Lagrangian
function of problem (6), as

L(x, zI ,wI) = 1
2‖y −Kx‖22 + λNΓN (Dx)

+λIΓI(zI) + µI
2 ‖x− zI‖22 −wT

I (x− zI)
(7)

Starting with initial values for zI ,x,wI and parameter µI ,
we iteratively update zI ,x,wI with regards to the aug-
mented Lagrangian starting from k = 1 as follows:

1. Update zI : zk+1
I = argminzI L(xk, zI ,w

k
I )

2. Update x: xk+1 = argminx L(x, zk+1
I ,wk

I )

3. Update wI : wk+1
I = wk

I − µI(xk+1 − zk+1
I ).

It is guaranteed in theory that the solution to the original
problem (6) can be obtained by solving (7) iteratively in
the ALM framework when penalty parameter µI increases



to a sufficiently large value [17]. Compared with the half-
quadratic splitting method [8, 11], a significant advantage of
ALM is that its convergence can be assured without increas-
ing µI indefinitely, which is especially suitable for solving
problems with multiple equality constraints.

The update step for the multiplier (step 3) is straightfor-
ward as required by the ALM framework [17]. The sub-
problem updating x (step 2) can be reformulated as a RLS
problem:

min
x

1

2
‖y −Kx‖22+

µI
2

∥∥∥∥zk+1
I +

wk
I

µI
− x

∥∥∥∥2
2

+λNΓN (Dx)

(8)
Compare to Eq.(2), Eq.(8) has an additional quadratic term
about x, i.e., the second term. If ΓN is also a quadratic term
on x, this subproblem can be solved through conjugate gra-
dient or FFT-based method. For most existing restoration
methods with non-smooth ΓN regularizers, this subprob-
lem can be further decomposed into smaller subproblems
through half-quadratic splitting or ALM [8, 11], for which
well-developed proximal operators for existing ΓN regular-
izers can be reused in the computation process. Note that
for practical implementations, the decomposition of the x
subproblem can be done within the same ALM framework
as zI , and its solution requires only a one-iteration approxi-
mate updating process. Compared to standard restoration
methods with only ΓN terms, our method requires extra
slight computation costs on the zI and wI updating steps.
For better understanding of the x subproblem, please refer
to the supplemental material for two concrete examples in-
volving different ΓN terms. The solution of the zI (step 1)
is detailed in the following section.

3.3. Soft-Rounding Operator

After rearranging terms, the subproblem of updating zI
(step 1) reduces to the following minimization problem:

min
zI

µI
2
‖zI − c‖22 + λIΓI(zI), (9)

where we define c = xk − 1
µI

wk
I . Note that both terms

in Eq.(9) can be split into the the sum on each element of
zI (see the definition of ΓI(·) in Eq.(3)). Therefore this
problem can be optimized separately on each element as

(zk+1
I )i = φ

t,
λI
µI

(ci), (10)

where

φt,λ(c) = argmin
x

(
1

2λ
(x− c)2 + γt(x)

)
(11)

can be seen as the proximal operator of function γt(·) [19].
The following result shows that φt,λ(c) can be computed

with a piece-wise function.
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Figure 3: Examples of function φt,λ(c) for different λ values
and the same set of t = [0.1, 0.5, 0.7, 0.8, 0.85] (�). Left: soft-
rounding (λ = 0.6). Right: rounding (λ = 1.1).

Theorem 1. For constant λ > 0 and t1 < t2 · · · < tn, the
optimal solution to Eq.(11) is given by:
(i) for c < t1, φt,λ(c) = min(t1, c+ λ

2 );

(ii) for c > tn, φt,λ(c) = max(tn, c− λ
2 );

(iii) hard-rounding: for c ∈ [t1, tn] and λ ≥ 1,

φt,λ(c) =

{
tj c ∈ [tj , tj + dj)

tj+1 c ∈ (tj+1 − dj , tj+1]
(12)

where dj = 1
2 (tj+1 − tj) and j = 1, · · · , n− 1;

(iv) soft-rounding: for c ∈ [t1, tn] and λ ∈ (0, 1),

φt,λ(c) =


tj c ∈ [tj , tj + dj ]
c

1−λ −
λ(tj+tj+1)
2(1−λ) c ∈ [tj + dj , tj+1 − dj ]

tj+1 c ∈ [tj+1 − dj , tj+1]
(13)

where dj = λ
2 (tj+1 − tj) and j = 1, · · · , n− 1.

The proof of Theorem 1 is given in the supplementary
material. In Fig.3 we show examples of φt,λ with different
λ values and the same set of t. As can be seen from Theo-
rem 1 and Fig.3, when λ ≥ 1, φt,λ maps c ∈ [tj , tj+1] to
the nearest of tj or tj+1, i.e., it rounds c to either tj or tj+1.
For 0 < λ < 1, φt,λ keeps a zone [tj + dj , tj+1 − dj ] ⊂
[tj , tj+1], inside which c is not rounded but undergoes a
linear transform, the slope of which is determined by λ. As
such, we term Eq.(13) as soft-rounding, drawing an analogy
from soft-thresholding, which is the proximal operator of `1
norm [7]. The soft-rounding operator “softens” the round-
ing operator, and has an interesting effect on its output: if c
is close to the endpoints of an interval, it will be rounded to
the nearest endpoint. However, if c lies in the middle range
of an interval, it is “nudged” towards the nearest t value
through a linear interpolation.

Note that through the ALM framework, regularizer ΓI
and the resulting soft-rounding operator can readily work
with most existing RLS image restoration methods. The
two regularizers, ΓN and ΓI , collaborate in a closed loop to
recover the uncorrupted image. The former restores struc-
tures (edges and contours), and the latter encourages the



restored image to have the desirable distinct pixel values.
Also, typical restoration methods tend to smooth the image,
and the soft-rounding operator, by enhancing the contrasts
of the restored image, serves as a countermeasure to such
over-smoothing.

Our method is advantageous to the simpler approach that
first restores the image and then applies rounding to project
the pixel values back to the target values. Since rounding
is performed independent of and after the restoration step,
it may destroy the structures recovered by restoration and
undo its effect. This difference is demonstrated in the sub-
sequent experiments in Section 4.

3.4. Obtaining Distinct Pixel Values

We first discuss several general ways to obtain distinct
pixel values to be used in ΓI , depending on the applica-
tion scenario and domain knowledge. (1) Distinct pixel
values can be extracted from external sources. For instance,
text images captured under similar illumination conditions
might vary in spatial layout and visual contents, but they
show very close distinct values for text and background
pixels respectively. (2) Distinct pixel values can be spec-
ified through user interaction. We first recover a clean im-
age from the degraded observation with existing restoration
methods, and then manually select dominant pixel values
from various regions as distinct pixel values. (3) For spe-
cific problems, distinct pixel values can be estimated from
the degraded observation. For images contaminated with
small Gaussian noise, their marginal intensity histograms
might be roughly estimated from the noisy observations fol-
lowing a 1D deconvolution approach [29], from which we
can extract distinct pixel values.

Apart from general discussions, we also provide a simple
but effective method to estimate distinct pixel values from
a degraded image. A natural idea is to first recover a clean
image with standard image restoration methods (e.g., L0)
and then use clustering methods such as K-Means to extract
the cluster centers as distinct pixel values. However, the im-
age degradation process blurs across different distinct pixel
values and shrinks the distances between them. This effect
might still be evident in the restored image, sometimes lead-
ing to inaccurate centers as shown Table 1. Inspired by the
local two-color model [10] and its recent extension [12],
we propose a simple two-step estimation method. In the
first step, we extract a small patch around each pixel and
estimate a local one-center or two-center model. If the in-
tensity variance in the patch is below a threshold, the patch
falls into the one-center model, and its mean pixel value is
collected for the second global clustering step; otherwise
the patch is a two-center patch, and its two cluster centers
are collected with a normalized two-class K-Means cluster-
ing method [12]. Compared to K-Means, normalized K-
Means tries to stretch the distance between the two cluster

Method Examples
Fig. 1 Fig. 4 Fig. 6 (2nd Row)

True Values 0, 100, 150, 255 26, 217 24, 53, 158, 224, 255
K-Means 18, 98, 156, 245 62, 215 14, 55, 164, 221, 253

Our Method 9, 101, 155, 255 32, 217 20, 52, 162, 224, 255

Table 1: The distinct pixel values estimated by K-Means and our
method for three L0 deconvolution visual examples.

centers and fight against the shrinkage effect due to image
degradation. Then in the second step, we perform a global
K-Median clustering on all the collected local center values
to determine the final distinct pixel values. We provide the
estimation results for three L0 deconvolution text and pat-
tern image examples in Table 1: the pixel values estimated
by our method are very close to those of the clean images
and are more accurate than the results produced by a single
global clustering method such as K-Means.

4. Experiment
In this section, we combine the soft-rounding operator

with several state-of-the-art RLS image restoration methods
and evaluate its performance on a variety of images. We
focus on the restoration of three typical categories of im-
ages with distinct pixel values, namely, text images with
two pixel values, pattern images with multiple pixel values,
and natural images with pixels of full range of 8-bit depth.
Furthermore, we also test our algorithm on other types of
images that are of practical importance, such as barcodes,
posters and license plates. In all experiments, we assume
the distinct pixel values are known.

4.1. Text Image Deconvolution

Text images form an important but special class of im-
ages. Many text images originate from text documents and
have two distinct pixel values for text and background pixels
respectively. State-of-the-art non-blind restoration perfor-
mance for text images was achieved with an RLS method
with an `0 regularizer in the gradient domain (subsequently
denoted as L0 in Table 2) [18, 25, 26]. Assuming the pixel
values for foreground and background pixels have been ex-
tracted from similar text images, we augment the `0-based
RLS restoration method with soft-rounding and denoted it
as L0+S. We also compare the performance of L0 combined
with three other pixel domain regularizers: a simple post-
processing method which directly rounds the restored im-
age to a binary image (denoted as L0+R), the fourth-order
polynomial regularizer to incorporate binary intensity con-
straints [27] (denoted as L0+P) and the `0 intensity regu-
larizer from [18] (denoted as L0+L). For fair comparison
of each method, we adjust parameters and report the best
overall performance.

We collect 20 text images of different languages, equa-
tions and graphs. We use three kernel/noise settings to sim-
ulate the degradation process: (i) a 33 × 33 kernel and



(a) original image (b) L0 (PSNR = 20.83dB, SSIM = 0.86) (c) L0+R (PSNR = 18.38dB, SSIM = 0.85)

(d) L0+L (PSNR = 21.01dB, SSIM = 0.87) (e) L0+P (PSNR = 21.72dB, SSIM = 0.90) (f) L0+S (PSNR = 21.88dB, SSIM = 0.92)
Figure 4: Text Image Deconvolution Example. The original image is degraded with a 51× 51 kernel and 1% Gaussian noise. The values
for text and background pixels are t1 = 26, t2 = 217 respectively. Details are best viewed on screen.

additive Gaussian noise with 3% standard deviation; (ii) a
45 × 45 kernel and 2% Gaussian noise; and (iii) a 51 × 51
kernel and 1% Gaussian noise. The kernels are motion-blur
kernels previously used in [13, 18].

Table 2 reports the average peak-signal-to-noise (PSNR)
and structural similarity index (SSIM) [24] results of the
five methods in three kernel-noise settings. Compared to
the original L0 method, the soft-rounding enhanced restora-
tion method significantly improves the average PSNR by
at least 0.5dB and the average SSIM by at least 0.04 for
all the settings, which is more effective than the other two
methods with intensity regularizers (L0+L, L0+P). The sim-
ple rounding method (L0+R) actually lowers the perfor-
mance for most settings. These quantitative results demon-
strate the effectiveness of our method.

Kernel/Noise Avg. PSNR (in dB)
L0 L0+R L0+L L0+P L0+S

33× 33+3% 19.46 16.75 19.71 19.91 20.03
45× 45+2% 18.20 15.71 18.47 18.57 18.86
51× 51+1% 18.03 15.95 18.23 18.93 19.16

Kernel/Noise Avg. SSIM
L0 L0+R L0+L L0+P L0+S

33× 33+3% 0.86 0.84 0.87 0.88 0.90
45× 45+2% 0.82 0.81 0.83 0.86 0.88
51× 51+1% 0.78 0.83 0.79 0.83 0.86

Table 2: The average PSNR and SSIM results of the 20 text im-
ages in three kernel-noise settings.

We provide a visual example of kernel/noise setting (iii)
in Figure 4, which contains an equation and some English
text. As shown by the example, the original L0 method pro-

duces pixel values that do not exist in the original text im-
age, leading to many visible artifacts. A direct rounding to
the binary image (L0+R) removes out-of-range pixel values,
but it also destroys recovered structures, which lowers both
visual quality and quantitative measures. Using the `0 reg-
ularizer in pixel domain (L0+L) slightly improves over the
L0 method in PSNR and SSIM, but visual artifacts are still
visible in the restored image. On the other hand, regular-
izers specifically enforcing distinct pixel values including
the method of [27] (L0+P) and our regularizer (L0+S) can
more effectively incorporate the binary intensity constraint.
Our method recovers more structures and suppresses more
intensity artifacts with the soft-rounding operator, leading
to the best visual quality and quantitative results. More ex-
amples can be found in the supplemental material.

4.2. Pattern Image Restoration

Pattern images are an important class of images which
can be frequently found from human-made objects, artis-
tic designs and paintings. An important property of pattern
images is that their visual contents are represented with a
few distinct pixel values [16]. We test our method to re-
move noise from pattern images. In our experiments, we
collect 10 pattern image examples and degrade them with
three high Gaussian noise levels (15%, 20% and 25%),
such that the restoration performance depends heavily on
the regularizers. We adopt the BM3D denoiser as the base-
line method [6] and combine it with the soft-rounding reg-
ularizer (denoted as BM3D+S). The numerical solution of



(a) original image (b) noisy observation (c) BM3D
PSNR = 19.97dB

SSIM = 0.69

(d) BM3D+R
PSNR = 19.82dB

SSIM = 0.71

(e) BM3D+S
PSNR = 20.93dB

SSIM = 0.76

(a) original image (b) noisy observation (c) BM3D
PSNR = 29.65dB

SSIM = 0.93

(d) BM3D+R
PSNR = 32.02dB

SSIM = 0.94

(e) BM3D+S
PSNR = 34.35dB

SSIM = 0.96
Figure 5: Pattern Image Denoising Examples. Top row: this pattern image is degraded with 25% Gaussian noise. The distinct pixel
values are 32, 76, 142, 230 respectively. Bottom row: this pattern image is degraded with 20% Gaussian noise. The distinct pixel values
are 32, 70, 135, 158, 231 respectively. Details are best viewed on screen.

Noise Avg. PSNR (in dB)
BM3D BM3D+R BM3D+S

15% 29.77 29.75 31.13
20% 26.71 27.21 28.67
25% 24.59 25.21 25.96

Noise Avg. SSIM
BM3D BM3D+R BM3D+S

15% 0.92 0.91 0.94
20% 0.89 0.89 0.92
25% 0.86 0.85 0.88

Table 3: The average PSNR and SSIM results of the 10 pattern
images in three noise settings.

BM3D+S can be found in the supplemental material. For
comparison, we include a post-processing method which di-
rectly rounds the BM3D denoised image pixels to nearest
known pixel values (denoted as BM3D+R). Note that previ-
ous binary intensity regularizers [18, 27] can not be easily
extended to handle more than two distinct pixel values.

Table 3 reports the average PSNR and SSIM results
over 10 pattern images for the three noise levels. Com-
pared to BM3D, our method (BM3D+S) improves the av-
erage PSNR by at least 1.3dB and the average SSIM by at
least 0.02 for the three cases. The simple rounding method
(BM3D+R) sometimes leads to a deterioration either in
PSNR or in SSIM. We provide two visual examples with
different noise levels are in Figure 5. As these results show,

the original BM3D method tends to introduce out-of-the-
range pixel values and blurred boundaries. The post round-
ing method (BM3D+R) improves the image contrast with
known intensity information, but it also introduces visible
errors on region boundaries. On the other hand, our method
improves both visual quality and quantitative results with
better contrast and image structures.

We further present several deconvolution examples of
practical pattern images in Figure 6. We use the L0 decon-
volution method as the baseline method and combine the
distinct pixel value information with the L0+R and L0+S
method. As in the case of denoising, our method (L0+S)
significantly improves the visual quality and the quantita-
tive results, while the direct rounding method (L0+R) in-
troduces extra artifacts and removes useful structures in the
original images. Please refer to the supplemental material
for more examples.

4.3. Natural Image Deconvolution

We randomly select 200 natural images from the
BSDS500 dataset [15] and test them with the same ker-
nel/noise settings used in Sec. 4.1. For natural image de-
convolution, we choose the total variation method (denoted
as TV) [20] as our baseline method. We integrate the in-
teger intensity constraint into the TV method using soft-



(a) original image (b) degraded image (c) L0
PSNR = 13.18dB

SSIM = 0.70

(d) L0+R
PSNR = 12.50dB

SSIM = 0.80

(e) L0+S
PSNR = 21.02dB

SSIM = 0.97

(a) original image (b) degraded image (c) L0
PSNR = 18.69dB

SSIM = 0.67

(d) L0+R
PSNR = 17.87dB

SSIM = 0.72

(e) L0+S
PSNR = 19.13dB

SSIM = 0.78
Figure 6: More L0 Deconvolution Examples. Top row: the 1D barcode image is degraded with a 65× 65 kernel and 1% Gaussian noise.
The distinct pixel values for barcode and background pixels are t1 = 0, t2 = 255 respectively. Bottom row: the license plate image is
degraded with a 55 × 55 kernel and 3% Gaussian noise. The distinct pixel values are 24, 53, 158, 224, 255 respectively. Details are best
viewed on screen.

Kernel/Noise # of Images with PSNR Difference D
> 0 < 0 > 0.01 < −0.01

33× 33+3% 129 71 24 0
45× 45+2% 126 74 22 0
51× 51+1% 132 68 68 1

Table 4: Quantitative comparison of TV+S and TV on 200
BSDS500 images for the three kernel/noise settings. The PSNR
difference is defined as D = PSNRTV+S − PSNRTV .

rounding (denoted as TV+S) and compare it to the post-
rounding method (denoted as TV+R).

Our experiments show that compared to TV, TV+S
improves the average PSNR by 0.005dB, 0.005dB and
0.025dB for the three cases, respectively, while TV+R
slightly degrades the performance by about 0.002dB for
each case. Even though the average contribution of the con-
straint on integer pixel values seems marginal, a detailed
performance breakdown can shed more light on its effect.
Specifically, we report the PSNR difference between TV+S
and TV on the 200 images in Table 4: for all the three ker-
nel/noise settings, TV+S improves TV on most images; and
for at least 11% of the images, the improvement obtained
with TV+S over TV is at least 0.01dB; on the other hand,
it decreases TV performance significantly (> 0.01dB) only
on one image example from all the cases.

Summary. As all the experimental results show, even
though the constraint on pixel values is simple, effectively
incorporating it in image restoration often improves the vis-
ual quality and the quantitative results for a variety of im-
ages and various restoration methods. Furthermore, for spe-
cial classes of natural images that have distinct pixel values,
it leads to considerable performance improvement.

5. Conclusion

In this work, we describe a new regularizer to augment
current image restoration algorithms when the original im-
ages have known distinct pixel values. Our regularizer is in
the form of a function and can be efficiently implemented
with a soft-rounding operation. This regularizer can be
readily incorporated into most existing image restoration
methods and our experiments on restoration of binary text
images, pattern images with multiple pixel values and natu-
ral images show that its incorporation leads to considerable
performance improvements to the state-of-the-art methods.

There are a few directions we would like to further im-
prove the current work. Currently, our method relies on the
knowledge of the distinct pixel values in the original image.
Another scenario is when we only know the exact number
of distinct pixel values but not the values themselves. One
subsequent study is to augment our algorithm so that it can
also simultaneously estimate the distinct pixel values and
restore the corrupted image. Furthermore, discriminative
image restoration methods [21, 22] seem to be an effective
alternative to the generative methods, and it is also of inter-
est to combine our regularizer with such methods.
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