Improving Image Restoration with Soft-Rounding: Supplementary Material

This document contains the following material:

1. Algorithm details on the \(x \) subproblem
2. Proof of Theorem 1
3. More visual examples on text image deconvolution, pattern image denoising and deconvolution.

1. The \(x \) Subproblem

Following the ALM framework in Sec. 3.2, the \(x \) subproblem (step 2) of our method is formulated as:

\[
\min_{x} \frac{1}{2} \|y - Kx\|^2_2 + \frac{\mu_I}{2} \|z^{k+1}_I + \frac{w_k}{\mu_I} - x\|^2_2 + \lambda_N \Gamma_N(Dx)
\]

where \(y \) is the degraded observation, \(K \) is the block Toeplitz matrix representation of the convolution kernel \(k \), \(z_I, w_I, \mu_I \) are the auxiliary variable, the Lagrange multiplier, and the penalty parameter for our distinct pixel value regularizer respectively, and \(D, \Gamma_N \) are the linear transform and the corresponding regularizer in the transformed domain. The first two terms are quadratic on \(x \), while the regularizer \(\Gamma_N \) is usually a non-smooth term on \(x \), which poses challenges for a direct numerical solution. For illustration purposes, we provide two \(\Gamma_N \) examples and their corresponding solutions for the \(x \) subproblem.

Example 1 We first consider the gradient-based \(\ell_0 \) regularizer [8, 11, 12], which has been used as the baseline method for text image/pattern image deconvolution in Sec. 4.1 and 4.2:

\[
\Gamma_N(\nabla x) = \|\nabla x\|_0
\]

where \(\nabla = (\nabla_h, \nabla_v) \) represents the gradient filters along horizontal and vertical directions, and the \(\ell_0 \) norm counts the number of nonzero elements in \(\nabla x \). Following the general variable splitting scheme [1], we introduce an auxiliary variable \(g \) and solve the equivalent problem, as:

\[
\min_{x} \frac{1}{2} \|y - Kx\|^2_2 + \frac{\mu_I}{2} \|v - x\|^2_2 + \lambda_N \|g\|_0
\]

where \(v = z^{k+1}_I + \frac{w_k}{\mu_I} \). We can solve this equality-constrained problem with half-quadratic splitting [3, 4] or the augmented Lagrangian method (ALM) [7]. For concise expression, we adopt the half-quadratic splitting technique and convert (3) to the following unconstrained problem:

\[
\min_{x, g} \frac{1}{2} \|y - Kx\|^2_2 + \frac{\mu_I}{2} \|v - x\|^2_2 + \lambda_N \|g\|_0
\]

When \(\beta \) approaches infinity, the solution of (4) reaches a local minimum of (3). Eq.(4) can be solved with block coordinate descent by alternatively minimizing \(x \) and \(g \) respectively. The \(x \) step is a least squares problem with three quadratic terms:

\[
\min_{x} \frac{1}{2} \|y - Kx\|^2_2 + \frac{\mu_I}{2} \|v - x\|^2_2 + \frac{\beta}{2} \|g - \nabla x\|^2_2
\]

which can be efficiently solved through FFT-based method [4]. The \(g \) step is formulated as:

\[
\min_{g} \frac{\beta}{2} \|g - \nabla x\|^2_2 + \lambda_N \|g\|_0
\]

which has a closed-form solution as follows [8, 11, 12]:

\[
g = \begin{cases}
\nabla x, & |\nabla x|^2 \geq \frac{2\lambda_N}{\beta} \\
0, & \text{otherwise}.
\end{cases}
\]

Note that this solution can be easily adapted to solve other \(\Gamma_N \) regularizers such as total variation [10] (Sec. 4.3), generalized Laplacian [5] and EPLL [13]: we only need to change \(D \) and the updating equations of the \(g \) step according to the selected linear transform and the \(\Gamma_N \) regularizer.

Example 2 We then consider the denoising problem, where \(K \) reduces to an identity matrix and \(\Gamma_N \) represents a denoising regularizer such as NLDDL [9] and BM3D [2]. We can still introduce auxiliary variables and solve the \(x \) subproblem with half-quadratic splitting or ALM. However, for the special case of image denoising, this step can be much simplified. Since \(K \) is an identity matrix, the first two quadratic terms of (1) can be merged into one quadratic term as follows:

\[
\min_{x} \frac{1}{2} \|y - Kx\|^2_2 + \frac{\mu_I}{2} \|v - x\|^2_2 + \lambda_N \|g\|_0
\]
Eq.(8) is a standard Gaussian denoising problem, which can be solved with any existing denoisers. For the pattern denoising application (Sec. 4.2), we choose BM3D as our baseline method.

2. Proof of Theorem 1

For constant $\lambda > 0$ and $t_1 < t_2 \cdots < t_n$, we aim to find the solution to the following optimization problem

$$
\phi_{t, \lambda}(c) = \arg\min_x L(x) = \arg\min_x \left(\frac{1}{2\lambda}(x - c)^2 + \gamma_t(x) \right)
$$

where

$$
\gamma_t(x) = \begin{cases}
\frac{1}{2}(t_1 - x) & \text{if } x < t_1 \\
\frac{1}{2}(x - t_j)(t_{j+1} - x) & \text{if } x \in [t_j, t_{j+1}] \\
\frac{1}{2}(x - t_n) & \text{if } x > t_n
\end{cases}
$$

(9)

Theorem 1. The optimal solution to (9) is given by:

(i) for $c \leq t_1$, $\phi_{t, \lambda}(c) = \min(t_1, c + \frac{\lambda}{2})$;

(ii) for $c \geq t_n$, $\phi_{t, \lambda}(c) = \max(t_n, c - \frac{\lambda}{2})$;

(iii) hard-rounding: for $c \in [t_1, t_n]$ and $\lambda \geq 1,$

$$
\phi_{t, \lambda}(c) = \begin{cases}
t_j & c \in [t_j, t_j + d_j) \\
t_{j+1} & c \in [t_{j+1} - d_{j+1}, t_{j+1}]
\end{cases}
$$

(11)

where $d_j = \frac{1}{2}(t_{j+1} - t_j)$ and $j = 1, \cdots, n - 1$;

(iv) soft-rounding: for $c \in [t_1, t_n]$ and $\lambda \in (0, 1)$,

$$
\phi_{t, \lambda}(c) = \begin{cases}
t_j & c \in [t_j, t_j + d_j) \\
t_{j+1} & c \in [t_{j+1} - d_{j+1}, t_{j+1}]
\end{cases}
$$

(12)

where $d_j = \frac{\lambda}{2}(t_{j+1} - t_j)$ and $j = 1, \cdots, n - 1$.

Proof. We first show that c and $\phi_{t, \lambda}(c)$ always lie in the same interval. If $c \in [t_j, t_{j+1})$ (cases (iii) and (iv)), for any $x \leq t_j$, we have

$$
L(x) = \frac{1}{2\lambda}(x - c)^2 + \gamma_t(x) \geq \frac{1}{2\lambda}(t_j - c)^2 = L(t_j)
$$

Similarly, for any $x \geq t_{j+1}$, we have $L(x) \geq L(t_{j+1})$. Therefore the minimum of L is obtained in $[t_j, t_{j+1})$, i.e., $\phi_{t, \lambda}(c) \in [t_j, t_{j+1})$. The same conclusion also holds for boundary cases (i) and (ii).

We then minimize $L(x)$ case by case. For case (i), we know $\phi_{t, \lambda}(c) \leq t_1$, which means we need to seek the minimum of $L(x)$ in $(-\infty, t_1)$:

$$
L(x) = \frac{1}{2\lambda}(x - c)^2 + \frac{1}{2}(t_1 - x), x \in (-\infty, t_1]
$$

The first derivative of $L(x)$ is:

$$
L'(x) = \frac{1}{\lambda}(x - c - \frac{1}{2}), x \in (-\infty, t_1]
$$

If $c + \frac{1}{2} \leq t_1$, $L(x)$ reaches the minimum when $L'(x) = 0$, which leads to $\phi_{t, \lambda}(x) = c + \frac{1}{2}$; if $c + \frac{1}{2} > t_1$, $L'(x) < 0$ for $x \leq t_1$, which means $L(x)$ reaches the minimum at $\phi_{t, \lambda}(c) = t_1$. Therefore, for case (i), $\phi_{t, \lambda}(c) = \min(c + \frac{1}{2}, t_1)$. Similarly, for case (ii), the optimal solution would be $\phi_{t, \lambda}(c) = \max(c - \frac{1}{2}, t_n)$.

If $c \in [t_j, t_{j+1})$, the minimum of $L(x)$ also locates in $[t_j, t_{j+1})$:

$$
L(x) = \frac{1}{2\lambda}(x - c)^2 + \frac{1}{2}(x - t_j)(t_{j+1} - x), x \in [t_j, t_{j+1}]
$$

We compute the first and second derivative of $L(x)$ as

$$
\begin{cases}
L'(x) = \frac{1}{\lambda}x + \frac{1}{2}(t_j + t_{j+1}) - \frac{\lambda}{2} \\
L''(x) = \frac{1}{\lambda} + \frac{1}{2}
\end{cases}
$$

(11)

If $\lambda \geq 1$ (case (iii)), $L(x)$ does not have a minimum in the range of $[t_j, t_{j+1}]$ since $L''(x) \leq 0$, so the optimum can only occur on the boundary points of interval, i.e., t_j or t_{j+1}, depending on which is closer to c. The optimal solution would be a rounding operation on c, as shown by (11).

If $0 < \lambda < 1$ (case (iv)), we find the point x^* that satisfies $L'(x^*) = 0$:

$$
x^* = \frac{c}{1 - \lambda} - \frac{\lambda(t_j + t_{j+1})}{2(1 - \lambda)}
$$

If $x^* \in [t_j, t_{j+1})$, $L(x)$ reaches the minimum at x^*, i.e., $\phi_{t, \lambda}(c) = x^*$. The condition $t_j \leq x^* \leq t_{j+1}$ can then be reformulated as:

$$
t_j + \frac{1}{2}(t_{j+1} - t_j) \leq c \leq t_{j+1} - \frac{1}{2}(t_{j+1} - t_j)
$$

Therefore if c satisfies the above condition, $\phi_{t, \lambda}(c) = x^*$; otherwise $\phi_{t, \lambda}(c)$ still takes the boundary values t_j or t_{j+1}, depending on which is closer to c. The final form of the optimal solution is represented by Eq.(12).

3. More Visual Examples

Figure 1 shows the three motion-blur kernels we used for the deconvolution experiments in Sec.4. They have been used for performance evaluation in previous work [6, 8].

Figures 2, 3 and 4 show three text deconvolution examples with three kernel/noise settings as reported in the paper.

Figure 5 shows two pattern image denoising examples with different noise settings.

Figures 6, 7 and 8 show three L0 deconvolution examples of practical pattern images.

Visual details are best viewed on screen. We will provide more examples in an extended version.
Figure 1: Three motion-blur kernels we used for all the deconvolution experiments.

References

Figure 2: Text Image Deconvolution Example 1. The original Chinese text image is degraded with a 33×33 kernel and 3% Gaussian noise. The distinct pixel values for text and background pixels are $t_1 = 26$, $t_2 = 220$ respectively. Details are best viewed on screen.
Figure 3: Text Image Deconvolution Example 2. The hand-drawing graph image is degraded with a 45×45 kernel and 2% Gaussian noise. The distinct pixel values for foreground and background pixels are $t_1 = 39$, $t_2 = 220$ respectively. Details are best viewed on screen.
Figure 4: Text Image Deconvolution Example 3. The English text image is degraded with a 51×51 kernel and 1\% Gaussian noise. The distinct pixel values for foreground and background pixels are $t_1 = 0, t_2 = 255$ respectively. Details are best viewed on screen.
Figure 5: Pattern Image Denoising Examples. Top row: this pattern image is degraded with 25% Gaussian noise. The distinct pixel values are 0, 29, 76, 226, 255 respectively. Bottom row: this pattern image is degraded with 20% Gaussian noise. The distinct pixel values are 194 and 219 respectively. Details are best viewed on screen.

Figure 6: L0 Deconvolution Example 1. The 2D barcode image is degraded with a 101 × 101 kernel and 1% Gaussian noise. The distinct pixel values for barcode and background pixels are \(t_1 = 0, t_2 = 255 \) respectively. Details are best viewed on screen.
Figure 7: L0 Deconvolution Example 2. The movie poster image is degraded with a 65×65 kernel and 1% Gaussian noise. The distinct pixel values are 0, 71, 117, 149, 200 respectively. Details are best viewed on screen.

Figure 8: L0 Deconvolution Example 3. The word cloud image is degraded with a 55×55 kernel and 2% Gaussian noise. The distinct pixel values are 43, 56, 255 respectively. Details are best viewed on screen.